1,770 research outputs found

    Hall effect in the normal state of high Tc cuprates

    Full text link
    We propose a model for explaining the dependence in temperature of the Hall effect of high Tc cuprates in the normal state in various materials. They all show common features: a decrease of the Hall coefficient RH with temperature and a universal law, when plotting RH(T)/RH(T0) versus T/T0, where T0 is defined from experimental results. This behaviour is explained by using the well known electronic band structure of the CuO2 plane, showing saddle points at the energies ES in the directions (0,+/-pi) and (+/-pi,0). We remark that in a magnetic field, for energies E>ES the carrier orbits are hole-like and for E<ES they are electron-like, giving opposite contributions to RH. We are abble to fit the experimental results for a wide range of hole doping, and to fit the universal curve. For us kb*T0 is simply EF-ES, where EF is the Fermi level varying with the doping.Comment: 7 pages, 11 figure

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra

    Full text link
    We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright gravitationally lensed galaxies at redshifts of 1.68<<z<<3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200<λo<82803200 < \lambda_o < 8280 \AA ; the average spectral resolving power is R=3300. The median spectrum has a signal-to-noise ratio of SNR=21SNR=21 per resolution element at 5000 \AA . As such, the MEGaSaURA spectra have superior signal-to-noise-ratio and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal publication. v2 addresses minor comments from refere

    Recovering Stellar Population Properties and Redshifts from Broad-Band Photometry of Simulated Galaxies: Lessons for SED Modeling

    Full text link
    We present a detailed analysis of our ability to determine stellar masses, ages, reddening and extinction values, and star formation rates of high-redshift galaxies by modeling broad-band SEDs with stellar population synthesis. In order to do so, we computed synthetic optical-to-NIR SEDs for model galaxies taken from hydrodynamical merger simulations placed at redshifts 1.5 < z < 3. Viewed under different angles and during different evolutionary phases, the simulations represent a wide variety of galaxy types (disks, mergers, spheroids). We show that simulated galaxies span a wide range in SEDs and color, comparable to these of observed galaxies. In all star-forming phases, dust attenuation has a large effect on colors, SEDs, and fluxes. The broad-band SEDs were then fed to a standard SED modeling procedure and resulting stellar population parameters were compared to their true values. Disk galaxies generally show a decent median correspondence between the true and estimated mass and age, but suffer from large uncertainties. During the merger itself, we find larger offsets (e.g., log M_recovered - log M_true = -0.13^{+0.10}_{-0.14}). E(B-V) values are generally recovered well, but the estimated total visual absorption Av is consistently too low, increasingly so for larger optical depths. Since the largest optical depths occur during the phases of most intense star formation, it is for the highest SFRs that we find the largest underestimates. The masses, ages, E(B-V), Av, and SFR of merger remnants (spheroids) are very well reproduced. We discuss possible biases in SED modeling results caused by mismatch between the true and template star formation history, dust distribution, metallicity variations and AGN contribution.Comment: Accepted for publication in the Astrophysical Journal, 24 pages, 19 figure

    The Majority of Compact Massive Galaxies at z~2 are Disk Dominated

    Get PDF
    We investigate the stellar structure of massive, quiescent galaxies at z~2, based on Hubble Space Telescope/WFC3 imaging from the Early Release Science program. Our sample of 14 galaxies has stellar masses of M* > 10^{10.8} Msol and photometric redshifts of 1.5 < z < 2.5. In agreement with previous work, their half-light radii are <2 kpc, much smaller than equally massive galaxies in the present-day universe. A significant subset of the sample appears highly flattened in projection, which implies, considering viewing angle statistics, that a significant fraction of the galaxies in our sample have pronounced disks. This is corroborated by two-dimensional surface brightness profile fits. We estimate that 65% +/- 15% of the population of massive, quiescent z~2 galaxies are disk-dominated. The median disk scale length is 1.5 kpc, substantially smaller than the disks of equally massive galaxies in the present-day universe. Our results provide strong observational evidence that the much-discussed ultra-dense high-redshift galaxies should generally be thought of as disk-like stellar systems with the majority of stars formed from gas that had time to settle into a disk.Comment: published versio

    The KMOS^3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7<z<2.7

    Get PDF
    We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (MM_*) and rest-frame (UV)M(U-V)-M_* planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 M=3×1097×1011M_*=3\times10^{9}-7\times10^{11} Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and vrot/σ>1v_{rot}/\sigma>1, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.Comment: 20 pages, 11 figures, 1 Appendix; Accepted to ApJ November 2

    On Sizes, Kinematics, M/L Gradients, and Light Profiles of Massive Compact Galaxies at z~2

    Full text link
    We present a detailed analysis of the structure and resolved stellar populations of simulated merger remnants, and compare them to observations of compact quiescent galaxies at z ~ 2. We find that major merging is a viable mechanism to produce systems of ~ 10^11 Msun and ~ 1 kpc size, provided the gas fraction at the time of final coalescence is high (~ 40%), and provided that the progenitors are compact star-forming galaxies, as expected at high redshift. Their integrated spectral energy distributions and velocity dispersions are in good agreement with the observations, and their position in the (v_{maj}/sigma, ellipticity) diagram traces the upper envelope of the distribution of lower redshift early-type galaxies. The simulated merger remnants show time- and sightline-dependent M/L ratio gradients that result from a superposition of radially dependent stellar age, stellar metallicity, and extinction. The median ratio of effective radius in rest-frame V-band light to that in mass surface density is ~ 2 during the quiescent remnant phase. This is typically expressed by a negative color gradient (i.e., red core), which we expect to correlate with the integrated color of the system. Finally, the simulations differ from the observations in their surface brightness profile shape. The simulated remnants are typically best fit by high (n >> 4) Sersic indices, whereas observed quiescent galaxies at z ~ 2 tend to be less cuspy (median n ~ 2.3). Limiting early star formation in the progenitors may be required to prevent the simulated merger remnants from having extended wings.Comment: Accepted for publication in The Astrophysical Journal, 21 pages, 17 figure

    Studying the impact of a medication use evaluation for polymedicated older patients by the community pharmacist (SIMENON) : study protocol

    Get PDF
    Background: Aged polymedicated patients are particularly vulnerable for drug-related problems. A medication review aims to optimize the medication use of patients and improve health outcomes. In this study, the effect of a pharmacist-led medication use review is investigated for polymedicated ambulatory older patients with the aim of implementing this pharmaceutical care intervention across Belgium. Methods: This article describes the study protocol of the SIMENON study and reports the results of the feasibility study, which aimed to test and optimize this study protocol. In the SIMENON intervention study, 75 Belgian community pharmacies each recruit 12 patients for a medication use review. For each patient, the identified drug-related problems and subsequent interventions are registered using the PharmDISC classification. In a subset of Dutch speaking patients, a pretest-posttest single group design is used to measure the impact of this review on patient related outcomes using questionnaires. The main outcome of the study is the type and number of drug-related problems and related interventions. A second outcome is the impact of the medication use review on adherence, objectively measured with dispensing data. Evolution in medication related quality of life is another outcome, measured with the Living with Medicines Questionnaire version 3. Other patient reported outcomes include adherence, self-management, patient satisfaction, fall incidents and use of emergency healthcare services. Discussion: The findings of this study can provide data on the effectiveness of a medication use review in the Belgian primary care setting. Furthermore, it will provide insights in which patients benefit most of this intervention and therefore facilitate the implementation of medication review in Belgium

    The Detection of a Red Sequence of Massive Field Galaxies at z~2.3 and its Evolution to z~0

    Get PDF
    The existence of massive galaxies with strongly suppressed star formation at z~2.3, identified in a previous paper, suggests that a red sequence may already be in place beyond z=2. In order to test this hypothesis, we study the rest-frame U-B color distribution of massive galaxies at 2<z<3. The sample is drawn from our near-infrared spectroscopic survey for massive galaxies. The color distribution shows a statistically significant (>3 sigma) red sequence, which hosts ~60% of the stellar mass at the high-mass end. The red-sequence galaxies have little or no ongoing star formation, as inferred from both emission-line diagnostics and stellar continuum shapes. Their strong Balmer breaks and their location in the rest-frame U-B, B-V plane indicate that they are in a post-starburst phase, with typical ages of ~0.5-1.0 Gyr. In order to study the evolution of the red sequence, we compare our sample with spectroscopic massive galaxy samples at 0.02<z<0.045 and 0.6<z<1.0. The rest-frame U-B color reddens by ~0.25 mag from z~2.3 to the present at a given mass. Over the same redshift interval, the number and stellar mass density on the high-mass end (>10^11 Msol) of the red sequence grow by factors of ~8 and ~6, respectively. We explore simple models to explain the observed evolution. Passive evolution models predict too strong d(U-B), and produce z~0 galaxies that are too red. More complicated models that include aging, galaxy transformations, and red mergers can explain both the number density and color evolution of the massive end of the red sequence between z~2.3 and the present.Comment: Accepted for publication in the Astrophysical Journa

    What turns galaxies off? The different morphologies of star-forming and quiescent galaxies since z~2 from CANDELS

    Get PDF
    We use HST/WFC3 imaging from the CANDELS Multicycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3e10M_sun from z=2.2 to the present epoch, a time span of 10Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and galaxy structure. We confirm the dramatic increase from z=2.2 to the present day in the number density of non-star-forming galaxies above 3e10M_sun reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parametrized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z<2.2. Quiescence correlates well with Sersic index at all redshifts. Quiescence correlates well with `velocity dispersion' and stellar surface density at z>1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10Gyr, in qualitative agreement with the AGN feedback paradigm.Comment: The Astrophysical Journal, in press; 20 pages with 13 figure
    corecore